The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper

نویسندگان

  • Galit Katarivas Levy
  • Jeremy Goldman
  • Eli Aghion
چکیده

In the last decade, iron and magnesium, both pure and alloyed, have been extensively studied as potential biodegradable metals for medical applications. However, broad experience with these material systems has uncovered critical limitations in terms of their suitability for clinical applications. Recently, zinc and zinc-based alloys have been proposed as new additions to the list of degradable metals and as promising alternatives to magnesium and iron. The main byproduct of zinc metal corrosion, Zn2+, is highly regulated within physiological systems and plays a critical role in numerous fundamental cellular processes. Zn2+ released from an implant may suppress harmful smooth muscle cells and restenosis in arteries, while stimulating beneficial osteogenesis in bone. An important limitation of pure zinc as a potential biodegradable structural support, however, lies in its low strength (σUTS ~30 MPa) and plasticity (ε < 0.25%) that are insufficient for most medical device applications. Developing high strength and ductility zinc with sufficient hardness, while retaining its biocompatibility, is one of the main goals of metallurgical engineering. This paper will review and compare the biocompatibility, corrosion behavior and mechanical properties of pure zinc, as well as currently researched zinc alloys.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review on nanostructured stainless steel implants for biomedical application

Over the last two decades, many researchers have developed a variety of stainless steel-based medical implant types,taking full advantage of nanostructuring technologies. In this paper the application, fabrication and development of nanostructured stainless steel based materials with new composition for medical implants will be discussed. It is well established that application of severe plasti...

متن کامل

Application of Shape Memory Alloys in Seismic Isolation: A Review

In the last two decades, there has been an increasing interest in structural engineering control methods. Shape memory alloys and seismic isolation systems are examples of passive control systems that use of any one alone, effectively improve the seismic performance of the structure. Characteristics such as large strain range without any residual deformation, high damping capacity, excellent re...

متن کامل

Zinc based bioalloys processed by severe plastic deformation – A review

Zinc based alloys have recently attracted great attention as promising biodegradable metals. Zinc exhibits moderate degradation rates in biological fluid and the zinc releases during the degradation process is considered safe to human systems. However, these materials exhibit critical limitations in terms of mechanical properties for medical applications. Adding alloying elements as well as gra...

متن کامل

Magnesium, Zinc and Iron Alloys for Medical Applications in Biodegradable Implants

Biodegradable materials are developed for designing temporary medical implants, like fixation devices for fractured bones or stents. At present, polymeric biomaterials such as poly-lactic acid (PLA) are currently used in these applications. The disadvantage of polymers is a low mechanical strength, hardness and wear resistance that is the main limitation for the use in load-bearing implants. Fo...

متن کامل

Preparation and Characteristics of Paper-based Biodegradable Plastics

The aim of this work was to make biodegradable plastics from renewable resources. Paper-based biodegradable plastics were produced via a sol-gel process by using zinc chloride solution. The optimum conditions were a zinc chloride concentration of 65%, reaction temperature of 70 °C, reaction time of 5 s, aging time of 3 h, and glycerol concentration of 10%. Fourier transform infrared spectroscop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017